
Processing and Delivery of Multimedia Metadata for

Multimedia Content Streaming1

Michael Ransburg, Christian Timmerer,

Hermann Hellwagner

Klagenfurt University

Universitätsstraße 65-67

A-9020 Klagenfurt

<first name>.<last name>@itec.uni-klu.ac.at

Sylvain Devillers

France Telecom R&D

BP 91226

F-35512 Cesson Sévigné CEDEX – France

sylvain.devillers@orange-ftgroup.com

Abstract: Today’s increasing variety of media data results in a great diversity of XML-

based metadata, which describes the media data on semantic or syntactic levels, in order

to make it more accessible to the user. This metadata can be of considerable size, which

leads to problems in streaming scenarios. Other than media data, XML metadata has no

concept of “samples”, thus inhibiting streamed (and timed) processing, which is natural

for media data. In order to address the challenges and requirements resulting from this

situation, the concept of streaming instructions is introduced. In particular, streaming

instructions address the problem of fragmenting metadata, associating media segments

and metadata fragments, and streaming and processing them in a synchronized manner.

This is achieved by enriching the metadata with additional attributes to describe media

and XML properties. Alternatively, a style sheet approach provides the opportunity to

dynamically set such streaming properties without actually modifying the XML

description.

1 Motivation and Scope

The role of XML-based metadata for describing distributed, advanced multimedia content

gains more and more popularity in order to increase the access of such contents from

anywhere and anytime. In the past, two main categories for this kind of metadata have

become apparent [Fo06]. The first category of metadata aims to describe the semantics of the

content such as keywords, violence ratings, or classifications. Metadata standards supporting

this category are MPEG-7, TV Anytime, and SMPTE among others [AKS03]. The second

1 Work partly supported by the IST European projects DANAE (IST-1-507113) and ENTHRONE (n° 038463)

category of metadata does not describe the semantics, but rather the syntax and structure of

the multimedia content. This category spans a wide range of research activities enabling

codec-agnostic adaptation engines for scalable contents by providing languages for

describing the bitstream syntax. Examples for such languages are the Bitstream Syntax

Description Language (BSDL) as specified in MPEG-21 DIA [Ve04], BFlavor [De06], and

XFlavor [HE02]. Note that MPEG-7 also provides means for describing syntactical aspects

of multimedia bitstreams [BS06].

Both categories of metadata (semantic and syntactic descriptions) have in common that they

are desired to become more and more detailed, as this increases the accessibility of the media

content. They often describe the content per segment or even per access unit (AU), which are

the fundamental units for transport of media streams and are defined as the smallest data

entity which is atomic in time, i.e., to which a single decoding time can be attached. For

example, a single violence rating for the whole movie might exclude many potential

consumers if it contains only one or two extremely violent scenes. However, if the violence

rating is provided per scene, for instance, the problematic scenes could simply be skipped for

viewers who do not wish to see them. Similarly, if a scalable multimedia content only

describes the temporal enhancement layers, terminals requiring spatial adaptation (e.g., a

mobile device) are excluded. Again, more descriptive metadata (i.e., describing spatial,

temporal, and fine-grained scalability) would increase the accessibility of the content. As a

consequence, this metadata is often of a considerable size, which – even when applying

compression – is problematic in streaming scenarios. That is, transferring entire metadata

files – if possible at all – before the actual transmission of the media data, could lead to a

significant startup delay. Additionally, there is no information on how this metadata is

synchronized with the corresponding media, which is necessary for streamed (i.e., piece-

wise) processing thereof. The concept of piece-wise (and timed) processing is natural for

media data. For example, a video consists of a series of independent pictures which are

typically taken by a camera. These independent pictures are then encoded, typically

exploiting the redundancies between these pictures. The resulting AUs can depend on each

other (e.g., in the case of bidirectional encoded pictures) but are still separate packets of data.

Although the characteristics of content-related metadata are very similar to those of timed

multimedia content, no concept of “samples” exists for this metadata today.

In this paper we introduce the concept of “samples” for metadata by employing streaming

instructions for both XML metadata and media data. The XML streaming instructions specify

the fragmentation of the content-related metadata into meaningful fragments and their timing.

These fragments are referred to as process units (PUs), which introduce the “samples”

concept – known from audio-visual content – to content-related metadata. The media

streaming instructions are used to locate AUs in the bitstream and to time them properly.

Both types of streaming instructions enable time-synchronized, piece-wise (i.e., streamed)

processing and delivery of media data and its related metadata. Furthermore, the

fragmentation mechanism helps to overcome the startup delay introduced by the size of the

metadata. Another, less obvious, benefit is described in an application scenario (see Section

5) where the streaming instructions enable to extend an existing static media adaptation

approach to dynamic and distributed use cases.

Section 2 summarizes the requirements for the streaming instructions. Related work is

discussed in Section 3. Section 4 describes the streaming instructions in detail. An

application scenario, which illustrates the benefits of the streaming instructions, is presented

in Section 5. Section 6 provides a performance evaluation of the streaming instructions and

of an adaptation server which facilitates the streaming instructions to enable dynamic and

distributed adaptation. Section 7 concludes this paper and points out possible future work

items.

2 Requirements

This section lists the basic requirements, which we identified for the streaming of metadata

and related media data:

― The streaming instructions need to describe how metadata and/or associated media data

should be fragmented into PUs (for metadata) and AUs (for media data) respectively, for

processing and/or delivery.

― A PU has to be well-formed (w.r.t. an XML schema) and needs to be able to be consumed

as such by a terminal (i.e., no other fragments are needed to consume it). This enables

piece-wise processing and it also enables to re-use existing tools for processing the

metadata (see Section 5 for an example).

― The streaming instructions shall enable to assign a timestamp to a PU and/or an AU

indicating the point in time where the fragment shall be available to a terminal for

consumption.

― The streaming instructions need to provide mechanisms, which allow a user to join a

streaming session that is in progress. This means that one needs to be able to signal when

a PU and/or AU shall be packaged in such a way that random access into the stream is

enabled.

― It shall be possible to apply the streaming instructions without modifying the original

XML document as there may be use cases, where it is not possible or feasible to modify

the multimedia content and its metadata, e.g., due to digital rights management issues.

― A streaming instructions processor shall work in a memory and runtime efficient way.

3 Related Work

In this section we review related work in the literature that deals with mechanisms enabling

streamed processing and transport of multimedia content and related metadata. Multiple

mechanisms for specifying the fragmentation and timing of media content are well known,

e.g., the sample tables of the ISO Base Media File Format [BMF]. The difference is that in

our approach this information is specified as a part of the metadata. This coupling provides a

common way for a user to specify the fragmentation and timing of both media and metadata.

MPEG is currently standardizing so called Multimedia Application Formats, which aim at

combining technology from MPEG and other standardization bodies to specify a specific

application, e.g., a photo player and a music player [DPC05]. All these applications employ

XML metadata and currently either use it only on a track/movie level or they use mechanisms

from the ISO Base Media File Format to provide the timing of more dense metadata.

However, this requires that the metadata is already fragmented beforehand and that the

metadata is therefore no longer available in its original format for non-streamed processing.

Wong et al. [WCL03] define a method for fragmenting an XML document for optimized

transport and consumption, preserving the well-formedness of the fragments. However, what

is consumed are not the fragments themselves but rather the document resulting from the

aggregation of the fragments. Furthermore, the fragmentation is achieved according to the

size of the Maximum Transport Unit (MTU) and not based on the semantics of the fragment,

i.e., no syntax is provided for a content author to specify which fragments should be

consumed at a given time.

Alternatively, MPEG-7 provides an encoding method (Binary Format for XML) to

progressively deliver and consume XML documents in an efficient way [Ni02]. Therefore,

so-called Fragment Update Units (FUUs) provide means for altering the current description

tree by adding or removing elements or attributes. However, MPEG-7 only specifies the

syntax of FUUs and its decoding, whereas our work concentrates on the composition of XML

fragments.

Interestingly, in both cases above, no timing information is provided which enables the

synchronized use of the metadata and the corresponding multimedia content.

The Continuous Media Markup Language (CMML) [PPP04] is an XML-based mark-up

language for time-continuous data similar to MPEG-7. Together with the Annodex file

format [PPP05] it allows to interleave time-continuous data with CMML mark-up in a

streamable manner. This approach is specific to CMML whereas in our work we aim to offer

a generic solution for time-synchronized, streamed processing and transport for media and

related metadata.

The Synchronized Multimedia Integration Language (SMIL) [Ru01] provides a timing and

synchronization module which can be used to synchronize the play-out of different media

streams. However SMIL is only concerned with media as a whole and therefore no AU

location, fragmentation, and timing for metadata are provided.

The Simple API for XML (SAX) is an event-based API which allows streamed processing of

XML [Si03]. It allows to parse an XML document without loading the complete document

into memory. This does help to avoid the startup delay for streamed processing. However,

legacy applications which rely on DOM would need to be re-implemented (e.g., the example

application in Section 5). Moreover, no timing or fragmentation information is provided for

piece-wise and synchronized processing of media and metadata. However, SAX might further

increase the performance of our current implementation where we currently use an XML Pull

Parser (see Section 6).

Our concept is close to a mechanism provided by Scalable Vector Graphics (SVG) [Qu03] to

indicate how a document should be progressively rendered: the

externalResourcesRequired attribute added to an element specifies that the

document should not be rendered until the sub-tree underneath is completely delivered. This

mechanism is specific to SVG. With this mechanism, the last state of the output document is

the input document itself. In contrast, our method allows isolating a fragment that can be

consumed at a given time, but this fragment does not need to contain the previous one. In

particular, it is possible to progressively consume a document without ever the need of

loading the full document into memory since only a fragment is consumed at a time.

To the best of our knowledge, the concept of PU and in particular the method we developed

for specifying their composition, processing, and their transport in conjunction with media

fragments is therefore original.

4 Streaming Instructions

We introduce three different mechanisms to respond to the requirements described in Section

2:

1. The XML streaming instructions describe how XML documents shall be fragmented

and timed.

2. The media streaming instructions localize AUs in the bitstream and provide related

time information.

3. Finally, the properties style sheet provides means to describe all of the above

properties in a separate document, rather than directly in the metadata.

The XML and media streaming instructions are defined as properties. The properties are

abstract in the sense that they do not appear in the XML document, but augment the element

information item in the document infoset [XIS04]. They can be assigned to the metadata by

using XML attributes and/or by the properties style sheet specified in Section 4.3.

Additionally, an inheritance mechanism is defined for some of these properties: the value of

the property is then inherited by all descendant elements until the property is defined with a

different value which then supersedes the inherited value, and is itself inherited by the

descendants. Lastly, a default value is specified for each property.

In the sequel, we will introduce the mechanisms listed above separately and then combine

them as they are applied to a specific scenario in Section 5.

4.1 XML Streaming Instructions

The XML streaming instructions provide the information required for streaming an XML

document by the composition and timing of PUs. The XML streaming instructions allow

firstly to identify PUs in an XML document and secondly to assign time information to them.

A PU is a set of connected XML elements. It is specified by one element named anchor

element and by a PU mode indicating how other connected elements are aggregated to this

anchor to compose the PU. Depending on the mode, the anchor element is not necessarily the

root of the PU. Anchor elements are ordered according to the navigation path of the XML

document. PUs may overlap, i.e. some elements (including anchor elements) may belong to

several PUs. Additionally, the content provider may require that a given PU be encoded as a

random access point, i.e. that the encoded PU (the AU) does not require any other AUs to be

decoded.

Figure 1 illustrates how an XML document is fragmented and timed using the XML

streaming instructions. The fragmenter uses as input the XML document to be streamed and a

set of XML streaming instructions properties provided either internally (as XML attributes

with the XMLSI namespace) and/or externally (with a properties style sheet as specified in

Section 4.3). The output of the fragmenter is a set of timed PUs.

Fragmenter

PU PU PU

t1t2 t3

XML document (+ XMLSI attributes) XMLSI Properties Style Sheet

Figure 1: Processing related to XML streaming instructions

The fragmenter parses the XML document in a depth-first order. XML streaming instructions

properties are computed as explained below. An element with the pu property set to true

indicates an anchor element and a new PU. The PU then comprises connected elements

according to the puMode property of the anchor element.

In the following the XML streaming instructions properties, as listed in Table 1, are specified

for:

― Fragmenting an XML document into PUs.

― Indicating which PUs shall be encoded as random access point.

― Assigning time information (i.e., processing time stamp) to these PUs.

Table 1: XML streaming instructions properties

Name Possible Values Inherited Default Value

anchorElement undefined, false, true no undefined

puMode
undefined, self, ancestors, descendants, ancestorsDescendants,

preceding, sequential

yes undefined

encodeAsRap undefined, false, true yes undefined

timeScale undefined, an integer value yes undefined

ptsDelta undefined, an integer value yes undefined

absTimeScheme undefined, a string value yes undefined

absTime undefined, a string value no undefined

pts undefined, an integer value no undefined

The puMode property specifies how elements are aggregated to the anchor element

(identified by the anchorElement property) to compose a PU. Figure 2 gives an overview

of the different puModes, which were derived by analyzing various types of metadata (as

introduced above) and their applications (see Section 5 for a detailed description of an

example application). The objective was to constrain ourselves to as few puModes as

possible, while still supporting all sensible applications, in order to enable an efficient

implementation. The semantics of the different puModes are as follows, given that the white

node in Figure 2 contains an anchorElement property which is set to true:

Figure 2: Examples of the different puModes

self: the PU contains only the anchor element.

ancestors: the PU contains the anchor element and its ancestors stack, i.e. all its ancestor

elements.

descendants: the PU contains the anchor element and its descendant elements.

ancestorsDescendants: the PU contains the anchor element, its ancestor and descendant

elements.

preceding: the PU contains the anchor element, its descendant and parent elements and all

the preceding-sibling elements of its ancestor elements and their descendants.

precedingSiblings: the PU contains the anchor element, its descendant and parent elements

and all the preceding-sibling elements (and their descendants) of its ancestor element.

sequential: the PU contains the anchor element, its ancestors stack and all the subsequent

elements (descendants, siblings and their ancestors) until a next element is flagged as an

anchor element.

The encodeAsRAP property is used to signal that the PU should be encoded as a random

access point in order to enable random access into an XML stream. The timeScale

property provides the number of ticks per second. The ptsDelta property specifies the

interval in time ticks after the preceding anchor element. Alternatively, the pts property

specifies the absolute time of the anchor element as the number of ticks since the origin. The

timing can not only be specified in ticks: the absTime property specifies the absolute time

of the anchor element. Its syntax and semantics are specified according to the time scheme

used (absTimeScheme property), e.g., NPT, SMPTE or UTC.

4.2 Media Streaming Instructions

The media streaming instructions specify two sets of properties for annotating an XML

document. The first set indicates the AUs and their location in the described bitstream, the

random access points, and the subdivision into AU parts. The second set provides the AU

time stamps.

Figure 3 illustrates how AUs in a bitstream are located and timed using the media streaming

instructions. The fragmenter uses as input the bitstream to be streamed and a set of media

streaming instructions provided either internally (as attributes) and/or externally (with a

properties style sheet). The output of the fragmenter is a set of timed AUs.

Figure 3: Processing related to media streaming instructions

The fragmenter parses the XML document in a depth-first order. The media streaming

instructions properties are computed as specified below. Anchor elements (i.e., elements with

the au property set to true) are ordered according to the parsing order and so are the

XML (+ MSI attributes)

Fragmenter

MSI Properties Style Sheet

AU AU AU

t1 t2 t3

Bitstream

corresponding AUs. An anchor element indicates the start of an AU, the extent of which is

specified by the auMode property.

In the following, the media streaming instructions properties, as listed in Table 1, are

specified for:

― Locating AUs in the bitstream.

― Indicating which AUs shall be encoded as random access point.

― Assigning time information (i.e., processing time stamp) to these AUs.

Table 2: Media streaming instructions properties

Name Possible Values Inherited Default Value

auMode tree, sequential yes tree

au undefined, false, true no undefined

auPart undefined, false, true no undefined

rap undefined, false, true yes undefined

timeScale undefined, an integer value yes undefined

dts undefined, an integer value no undefined

cts undefined, an integer value no undefined

dtsDelta undefined, an integer value yes undefined

ctsOffset undefined, an integer value yes undefined

addressUnit bit, byte yes undefined

start undefined, an integer value no undefined

length undefined, an integer value no undefined

The media streaming instructions, as listed in Table 2, are tailored to metadata which can

linearly describe a bitstream on an AU granularity, such as BSD, gBSD [Ve04], BFlavor

[De06], XFlavor [HE02] or MPEG-7 MDS [Si01]. The start of an AU is indicated by an

element with an au property set to true. This element is named anchor element. The media

streaming instructions indicate the start and the length of an AU in bits or bytes

(depending on the addressUnit property). The extent of the AU depends on the value of

the auMode property of the anchor element as depicted in Figure 4 (the white node indicates

an element with the au property set to true). In the sequential mode, the AU extends until a

new element is found with an au property set to false or true. If no element is found with an

au property set to true or false, the AU extends until the end of the bitstream. In the tree

mode, the AU is the bitstream segment described by the XML sub-tree below the element

flagged with the au property set to true. AU parts are defined in a similar way. The start of a

new AU part in an AU is indicated by an auPart property set to true and the extent is

specified by the auMode property. In the sequential mode, the AU part extends until a new

element has an auPart property set to false or true (in the latter case, a new AU part

immediately follows), until the end of the AU, or until the end of the media bitstream. In the

tree mode, the AU part is the bitstream segment corresponding to the sub-tree below the

element flagged by the auPart property. The auPart property provides a way for

indicating AU parts within an AU in a coding format independent way. In this way, a

streaming server that is not aware of the format of the streamed media content may

nevertheless meet the requirements of a specific RTP payload format, e.g., special

fragmentation rules.

Figure 4: Examples of the different AUModes

Other information about AUs is specified by the properties of the anchor element. In

particular, the AU is a random access point if the rap property of the anchor element is set

to true. The rap property is inheritable, and it is therefore possible to inherit this property to

each AU (i.e., each AU is a RAP) by setting the rap property of the XML root element to

true. The time information of the AU (CTS and DTS) is also specified by the properties of

the anchor element as explained below. The media streaming instructions use an absolute and

a relative mode for specifying time information. In absolute mode, the CTS and DTS of an

AU are specified independently from other AUs. In relative mode, the CTS and DTS are

calculated relatively to the CTS and DTS of the previous AU. Both modes can be used in the

same document. For example, an absolute date can be applied to a given AU, and the CTS

and DTS of the following AUs are calculated relatively to this AU. In both modes, CTS and

DTS conform to a time scale, i.e. they are specified as a number of ticks. The duration of a

tick is given by the time scale which indicates the number if ticks per second, which allows

for fine granular timing of AUs. The time scale is specified by the timeScale property.

The two properties cts and dts define the CTS and DTS of the AU, expressed as an

integer number of ticks. They are not inheritable and may be applied to an anchor element for

specifying the CTS and DTS of the corresponding AU. Alternatively, two properties named

dtsDelta and ctsOffset allow calculating the DTS and CTS of the AU relatively to the

previous AU. The dtsDelta property indicates the time interval in ticks between the

current AU and the previous one. The ctsOffset property indicates the time interval in

ticks between the DTS and the CTS of the current AU. Some media codecs do not require a

CTS information. In this case, the cts and ctsOffset properties are not used and may be

undefined.

For each anchor element, the properties of the corresponding AU are then calculated as

follows:

if isPresent(dts(n)) { DTS(n) = dts(n); } else {

 if n = 0 { // i.e., first AU

 DTS(n) = 0;

 } else { DTS(n) = ((DTS(n-1) + DTS_DELTA(n-1))/TIME_SCALE(n-1)) * TIME_SCALE(n) ; }

}

if isPresent(cts(n)) { CTS(n) = cts(n); } else { CTS(n) = DTS(n) + ctsOffset; }

TIME_SCALE(n) = timeScale(n); DTS_DELTA(n) = dtsDelta(n); RAP(n) = rap(n);

Here dts(n), cts(n), timeScale(n), dtsDelta(n), ctsOffset(n), rap(n) represent the media

streaming instruction properties of the nth anchor element, and DTS(n), CTS(n),

TIME_SCALE(n), DTS_DELTA(n) and RAP(n) represent the properties of the associated

n
th

 AU.

4.3 Properties Style Sheet

It is also possible to specify the XML and media streaming instructions properties without

adding XML attributes to the original document. This is in particular useful when associated

Digital Rights Management (DRM) information forbids editing the original document and/or

where the properties are set according to a regular pattern, as this reduces the overhead

introduced by the streaming instructions. It also eases the management of multiple media

contents (and their related metadata) which are fragmented and timed in the same way. Then,

instead of annotating each XML document a single properties style sheet can be used. This

external document specifies a set of properties which should be set for all elements matching

a given pattern. For expressing such patterns, we introduce a new expression language named

Lightweight Expression language (LXPath) based on STXPath. STXPath is an expression

language developed in the context of STX (Streaming Transformations for XML) [STX04], a

transformation language enabling the streamed transformation of an XML document, i.e.,

without building a tree in memory. The syntax of STXPath is similar to XPath [XPL99], but

its semantics differ. Whereas an XPath expression is resolved against the full document, an

STXPath expression is resolved against a limited context consisting of the current element,

its ancestor’s stack and its position within siblings. For example, in XPath, the expression

/node1/node2 returns a sequence containing all node2 elements, whose parent element

is the document element and is named node1. In LXPath, on contrary, the same expression

returns a sequence containing a single node from this node-set; the one which is an ancestor

of the current node. The use of STXPath expressions as matching patterns enables filtering an

XML document without loading the full tree into memory, and is suitable for efficient SAX-

based architectures. In our approach, we define a limited subset of STXPath required for

locating elements in an efficient and simple way.

<?xml version="1.0"?>

<schema version="ISO/IEC 21000-7:2004/Amd.2" id="PSS.xsd"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:ps="urn:mpeg:mpeg21:2003:01-DIA-PSS-NS"

 targetNamespace="urn:mpeg:mpeg21:2003:01-DIA-PSS-NS">

 <element name="properties"><complexType><sequence>

 <element name="template" minOccurs="0" maxOccurs="unbounded">

 <complexType><sequence>

 <element name="property" minOccurs="0" maxOccurs="unbounded">

 <complexType>

 <attribute name="name" type="QName" use="required"/><attribute name="namespace" type="anyURI"

 use="optional"/><attribute name="value" type="string" use="required"/>

 </complexType></element></sequence>

 <attribute name="match" type="string" use="required"/>

</complexType></element></sequence></complexType></element></schema>

Document 1: Properties Style Sheet XML Schema

As shown in Document 1, the properties style sheet consists of a sequence of templates

specified by a matching pattern expressed in LXPath and containing a list of properties

defined by a qualified name and a value. This properties style sheet and LXPath are designed

in a way such that properties can be applied on-the-fly in a SAX-based architecture. While

parsing the original document with a SAX parser, each new element is matched against each

of the templates, and the corresponding properties are set accordingly.

Table 3: Grammar for LXPath in EBNF notation

MatchPattern ::= BoolExpr

BoolExpr ::= Expression ("|" Expression)*

Expression ::= ("/" | "//")? PathStep (("/" | "//") PathStep)*

PathStep ::= (QName | WildCard) Predicate*

WildCard ::= "*" | ("*" ":" NCName) | (NCName ":" "*")

Predicate ::= "[" PredicateExpr "]"

PredicateExpr ::= OrExpr

OrExpr ::= AndExpr (("or" | "|") AndExpr)*

AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*

ComparisonExpr ::= AdditiveExpr (GeneralComp AdditiveExpr)?

GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

AdditiveExpr ::= MultiplicativeExpr (("+" | "-") MultiplicativeExpr)*

MultiplicativeExpr ::= PrimaryExpr (("*" | "div" | "idiv" | "mod") PrimaryExpr)*

PrimaryExpr ::= AttrExpr | Function | StringLiteral | NumericLiteral

AttrExpr ::= "@" NCName

Function ::= "position()"

StringLiteral ::= "'" Char* "'"

NumericLiteral ::= IntegerLiteral | DecimalLiteral

IntegerLiteral ::= ("-" | "+")? Digits

DecimalLiteral ::= ("-" | "+")? ("." Digits) | (Digits "." [0-9]*)

Digits ::= [0-9]+

NCName ::= [http://www.w3.org/TR/REC-xml-names/#NT-NCName]

QName ::= [http://www.w3.org/TR/REC-xml-names/#NT-QName]

Char ::= [http://www.w3.org/TR/REC-xml/#NT-Char]

The complete grammar of LXPath is shown in Table 3 specified in Extended Backus-Naur

Form (EBNF) notation with MatchPattern as entry point. An example for a properties style

sheet can be found in Section 5.3.

5 Application: MPEG-21 BSD-based Digital Item Adaptation

MPEG-21 BSD-based adaptation [Ve04] represents a codec-agnostic adaptation approach

utilizing XML-based BSDs and exploiting the characteristics of scalable coding formats. It

has been adopted as part of the MPEG-21 multimedia framework and is briefly described in

the following.

The characteristics of scalable coding formats enable the generation of a degraded version of

the original media bitstream by means of simple remove operations followed by minor update

operations, e.g., removal of spatial layers and updates of certain header information

comprising the horizontal and vertical resolution. A BSD is an XML document which

describes a (scalable) bitstream enabling its adaptation in a codec-agnostic way. Only the

high-level bitstream structure is described, i.e., how it is organized in terms of packets,

headers, or layers. The level of detail of this description depends on the bitstream

characteristics and the application requirements. The Adaptation Quality of Service

description (AQoS) describes how a media content (segment) needs to be adapted in order to

correspond to the various usage environment situations, e.g., how many quality layers need to

be dropped to correspond to the currently available network bandwidth.

5.1 State of the Art: Static Adaptation

Figure 5 depicts an adaptation server. The adaptation comprises an adaptation decision taking

process resulting in an adaptation decision, which guides the BSD transformation. The

transformed BSD then steers the bitstream generation process [VT05][TDV06]. The

Adaptation Decision Taking Engine (ADTE) computes an adaptation decision based on the

current usage environment description and the AQoS. This adaptation decision is the input to

the BSD transformation process which transforms the BSD, e.g., by using standardized XML

transformation languages such as XSLT. The bitstream generation process (BSDtoBin)

parses the transformed BSD and generates the adapted media bitstream by using the

bitstream offsets and parameter values of the remaining BSD elements. Only the bitstream

segments described by the remaining BSD elements are copied to the output bitstream

whereas all other segments are skipped. The output bitstream (and optionally its XML

metadata) is then provided to a media consumer, e.g., an end device or a network node which

performs further adaptation steps. Due to the fact that the BSD describes the complete

bitstream, any adaptation which is performed always impacts the complete bitstream. No

piece-wise adaptation to a dynamically changing usage environment is possible. Further

disadvantages when applying this approach to streaming scenarios include:

― High memory requirements due to the need to parse the complete BSD into memory

for the adaptation

― High startup delay in streaming scenarios, since any adaptation impacts the complete

bitstream

― Slow reaction to dynamically changing usage environment in streaming scenarios,

since any adaptation impacts the complete bitstream

5.2 Using Streaming Instructions to Enable Dynamic and Distributed Adaptation

This section describes and illustrates how the streaming instructions described above can be

used to extend the static MPEG-21 DIA approach towards dynamic and distributed

adaptation scenarios. Figure 6 depicts how we integrated the streaming instructions with the

BSD-based adaptation approach in an adaptation server in order to enable dynamic and

distributed adaptation. The BSD is provided, together with the XML streaming instructions,

to the XML fragmenter. The fragmenter then determines the next PU from the BSD and

assigns a time stamp to it, as described in Section 4.1. This PU is then transformed using the

XSLT in the same way as a complete BSD would be transformed (as described in Section

5.1). The transformed PU is forwarded to the so-called BSDtoBinAU processor, which

combines the functionality of the normative BSDtoBin processor and the media fragmenter.

We decided to combine these two processors due to performance reasons. If the BSDtoBin

processor cannot be modified, e.g., because it is implemented in hardware, the media

fragmenter can be executed independently before the BSDtoBin processor. The

BSDtoBinAU processor has the appropriate media AU and its time stamp available, thanks to

the media streaming instructions. In the next step the BSDtoBinAU processor adapts the

media AU order to correspond to the transformed PU. The transformed PUs, which are still

represented in the text domain, are then encoded into AUs using a proper encoding

mechanism. This can for example be a mechanism as basic as a general compression program

such as WinZip or gzip. Another possibility would be to use XML-aware compression

mechanisms such as XMLPPM [HAY06]. Another way to encode the PUs is to use a specific

binary codec for XML such as the MPEG-7 Binary XML codec (BiM) [Ni02]. BiM is a

schema-aware encoding mechanism which, if properly configured, removes any redundancy

which exists between consecutive PUs. The redundancy, resulting from the requirement that

PUs need to be able to be processed independently, is removed and only the new information

is encoded into AUs (except for when a PU is declared as a RAP). Several studies have been

performed on XML compression in the past [CW02][DB05][Su06]. In our own evaluations

which also consider streaming support, BiM proved to be the most efficient way to encode

PUs [RTH05].

After encoding the PUs into BiM AUs, the media and BSD AUs are packetized for transport.

In this step the timing information provided by media and XML streaming instructions is

mapped onto the transport layer (RTP in our case), by including it into the packet header.

Both the media and BSD AUs are then streamed into the network, where an adaptation proxy

could perform additional adaptation steps or to an end device where the dynamically adapted

media is consumed. In this case, the transport of the metadata may be omitted.

Media

BSDtoBin

Media’

BSD

t0

Encode

t0

AU

Network

Transform

Packetize Packetize

BSD

XSLT

BSD’t0

ADTE

AQoS
Context
(Usage

Environment)

Figure 5: Static BSD-based Adaptation

Approach

Figure 6: Dynamic BSD-based Adaptation

Approach

Other content-related metadata which does not have fragmentation or timing requirements is

not streamed but provided using other out-of-band mechanisms, e.g., as attributes in the

Session Description Protocol (SDP) [SDP]. The normative behavior of the MPEG-21 DIA

mechanisms is not changed by integrating the streaming instructions.

5.3 Example

In this section we provide example code for the mechanisms described above.

Document 2 shows an MPEG-21 DIA BSD which includes media and XML streaming

instructions in order to enable dynamic processing of the BSD and the described media. In

this example, each top-level gBSDUnit describes an AU of the MPEG-4 Scalable Video

Codec [SMW06], including its start and length in bit (as indicated by the addressUnit

attribute). As can be seen, the BSD already provides attributes for addressUnit, start

and length. The fragmenter therefore uses the values in these attributes rather than

duplicating them in the corresponding streaming instructions attributes. Within an AU, each

gBSDUnit describes a single layer of the SVC stream. The layer is identified by the marker

attribute value, which for the first layer of the second AU states that it is the first FGS layer

of the first spatial layer which belongs to the first temporal layer (“T0:S0:F0”).

<dia:DIA xmlns:xmlsi="urn:mpeg:mpeg21:200x:01-SI" xmlns:msi="urn:mpeg:mpeg21:200x:01-MSI"

 xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS" xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"

 xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <dia:Description msi:timeScale="1000" msi:auMode="tree" xmlsi:timeScale="1000"

 xmlsi:puMode="ancestorsDescendants" xsi:type="gBSDType" addressUnit="bit" addressMode="Absolute"

 bs1:bitstreamURI="cdi_qcif_125_PARLIERsvc_201.raw">

 <gBSDUnit start="0" length="0" msi:dts="0" msi:cts="1280" msi:au="true" xmlsi:anchorElement="true"

 xmlsi:absTimeInt="0" msi :rap="true" xmlsi :rap="true">

 <gBSDUnit start="0" length="128" marker="T0:S0:F0"/>

 <!-- ... and so on ... -->

 <gBSDUnit start="22288" length="72" marker="T0:S0:F0"/>

 </gBSDUnit>

 <gBSDUnit start="22360" length="0" msi:dts="80" msi:cts="1360" msi:au="true" xmlsi:anchorElement="true"

 xmlsi:absTimeInt="80" msi :rap="true" xmlsi :rap="true">

 <gBSDUnit start="22360" length="1560" marker="T0:S0:F0"/>

 <gBSDUnit start="23920" length="6304" marker="T0:S0:F1"/>

 <gBSDUnit start="30224" length="10784" marker="T0:S0:F2"/>

 <gBSDUnit start="41008" length="72" marker="T1:S0:F0"/>

 <gBSDUnit start="41080" length="1920" marker="T1:S0:F0"/>

 <gBSDUnit start="43000" length="552" marker="T1:S0:F1"/>

 <gBSDUnit start="43552" length="3048" marker="T1:S0:F2"/>

 <!-- ... and so on ... -->

 </gBSDUnit>

 <gBSDUnit start="62992" length="0" msi:dts="1360" msi:cts="2640" msi:au="true"

 xmlsi:anchorElement="true" msi :rap="true" xmlsi :rap="true" xmlsi:absTimeInt="1360">

 <gBSDUnit start="62992" length="4456" marker="T0:S0:F0"/>

 <!-- ... and so on ... -->

 </gBSDUnit>

 <gBSDUnit start="107616" length="0" msi:dts="2640" msi:cts="3920" msi:au="true"

 xmlsi:anchorElement="true" xmlsi:absTimeInt="2640" msi :rap="true" xmlsi :rap="true">

 <gBSDUnit start="107616" length="1200" marker="T0:S0:F0"/>

 <!-- ... and so on ... -->

 </gBSDUnit>

 <!-- ... and so on ... -->

 </dia:Description></dia:DIA>

Document 2: Example of gBSD with streaming instructions

The streaming instructions are in bold. After declaring the namespaces which belong to the

streaming instructions, the timeScale, auMode and puMode are specified in the

Description element. The inheritance of these properties makes sure that they are valid

for all gBSDUnits which are children of the Description element. In this application,

the ancestorsDescendants puMode is used, which specifies that any PU consists of

the element containing the anchorElement attribute and all its ancestors and descendants.

The first resulting PU, when applying this fragmentation rule, can be seen in Document 4.

Investigation of these documents shows that each document describes only a small part (in

this case an AU) of the media bitstream. However, as we used the

ancestorsDescendants puMode, the documents correspond to the requirement that a

PU has to be well-formed and needs to be able to be consumed as such by a terminal. This

allows us to use normative DIA mechanisms without the need to change them. These PUs are

then provided to the BSDtoBinAU processor (which is a combination of the normative

BSDtoBin processor and our media fragmenter), which extracts the AUs, as specified by the

media streaming instructions and adapts them, as specified by MPEG-21 DIA.

Alternatively, the properties style sheet provided in Document 3 provides the streaming

instructions externally, without changing the gBSD itself. As specified in Section 4.3 the

properties style sheet consists of a sequence of templates specified by a matching pattern

expressed in LXPath and containing a list of properties defined by a qualified name and a

value. This properties style sheet sets the same attributes as shown in the example in

Document 2.

<properties xmlns="urn:mpeg:mpeg21:200x:01-PS" xmlns:msi="urn:mpeg:mpeg21:2003:01-DIA-MSI-NS"

 xmlns:xmlsi=" urn:mpeg:mpeg21:2003:01-DIA-XSI-NS" xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"

 xmlns:gBSD="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS">

 <template match="/dia:DIA/dia:Description">

 <property name="msi:timeScale" value="1000"/><property name="msi:auMode" value="tree"/>

 <property name="xmlsi:timeScale" value="1000"/><property name="xmlsi:puMode"

 value="ancestorsDescendants"/>

 </template>

 <template match="/dia:DIA/dia:Description/gBSD:gBSDUnit">

 <property name="xmlsi:anchorElement" value="true"/> <property name="xmlsi:rap" value="true"/>

 <property name="msi:au" value="true"/><property name="msi:rap" value="true"/>

 </template>

 <template match="/dia:DIA/dia:Description/gBSD:gBSDUnit[0]">

 <property name="msi:dts" value="0"/><property name="msi:cts" value="1280"/>

 <property name="xmlsi:absTimeInt" value="0"/>

 </template>

 <template match="/dia:DIA/dia:Description/gBSD:gBSDUnit[1]">

 <property name="msi:dts" value="80"/><property name="msi:cts" value="1360"/>

 <property name="xmlsi:absTimeInt" value="80"/>

 </template>

 <!-- … and so on … -->

</properties>

Document 3: Example of Properties Style Sheet

<dia:DIA < !-- … NS declarations ommited to save space … --> >

 <dia:Description msi:timeScale="1000" msi:auMode="tree" xmlsi:timescale="1000"

 xmlsi:puMode="ancestorsDescendants" xsi:type="gBSDType" addressUnit="bit" addressMode="Absolute"

 bs1:bitstreamURI="cdi_qcif_125_PARLIERsvc_201.raw">

 <gBSDUnit start="0" length="0" msi:dts="0" msi:cts="1280" msi:au="true" xmlsi:anchorElement="true"

 xmlsi:absTimeInt="0">

 <gBSDUnit start="0" length="128" marker="T0:S0:F0"/>

 <!-- ... and so on ... --></gBSDUnit></dia:Description></dia:DIA>

Document 4: First PU resulting from processing the gBSD in Document 2

6 Measurements

In order to validate our work, the system described in Section 5.2 was implemented in C++,

together with the streaming instructions processors, i.e., the media and XML fragmenter. The

libxml XMLTextReader interface
3
 (an XML Pull Parser) was used for accessing the XML

information. The aim of the measurements is to evaluate if our prototype implementation of a

dynamic MPEG-21 adaptation node can be utilized in a real-time streaming scenario. To this

end we first measure the performance of the streaming instructions processors and then we

evaluate the CPU load and memory utilization of the complete adaptation node (depicted in

Figure 8). All tests were performed on a Dell Optiplex GX620 desktop with an Intel Pentium

D 2.8 GHz processor and 1024 MB of RAM using Windows XP SP2 as an operating system.

Time measurements were performed using the ANSI-C clock method.

Table 4: Characteristics of Test Data

 MPEG-4 BSAC EZBC MPEG-4 SVC

Media Size 12511 KB 450536 KB 538816 KB

Average AU Size 0,22 KB 197,86 KB 18,59 KB

BSD Size 196265 KB 144939 KB 123189 KB

Average PU Size 4,02 KB 63,80 KB 4,90 KB

Number of [A|P]Us 56100 2277 28980

Resolution N/A QCIF QCIF

Frame Rate 21 12,5 12,5

Length in Minutes 44,52 48,58 193,2

Table 4 provides an overview of the test data. Media and the corresponding BSDs for three

different media codecs were selected. MPEG-4 BSAC [Pu99] is a scalable audio codec,

EZBC [HW00] is a scalable video codec based on wavelets and MPEG-4 SVC [SMW06] is

a scalable video codec based on conventional block transforms which is currently being

3 libxml; http://xmlsoft.org

standardized in MPEG. The considerable size differences between the SVC and the EZBC

content (both media and metadata) are due to the fact that the EZBC was encoded with 6

spatial layers and the SVC was encoded with only a single spatial layer. For our tests, the

BSD is provided in the uncompressed domain and we consider that each PU describes

exactly one AU. We used streaming instructions embedded into the BSD to specify the

fragmentation mechanism for our measurements. All tests have been repeated 10 times in

order to get accurate results.

0

100

200

300

400

500

600

700

BSAC SVC EZBC

Media / Metadata Type

S
e

c
o

n
d

s

PUs per second

AUs per second

Figure 7: Streaming instructions: performance

For the XML fragmenter the measurements cover: 1) Access to the BSD from the file system,

2) Parsing the BSD using the libxml XMLTextReader, 3) Compose PUs, 4) Assign timing

information to the PUs and 5) Encapsulate PUs and their timing into RTP packets. For the

media fragmenter the measurements cover: 1) Access to the BSD from the file system, 2)

Access to the media from the file system, 3) Parse the BSD using the libxml

XMLTextReader, 4) Extract AUs, 5) Assign timing information to the AUs and 6) Output

AUs and their timing to a file. Figure 7 shows the performance of the media and XML

fragmenters. Considering that each EZBC AU describes 16 temporal layers (i.e., frames) and

that each SVC AU describes 5 temporal layers, we can conclude that our prototype

implementation offers good real-time performance.

Consequently we measured the performance of the complete adaptation server, as depicted in

Figure 8. These measurements cover: 1) PU composition and AU extraction as measured

above – except for step 5 (no file output), 2) BSD-based adaptation to each PU / AU (i.e., a)

Compute an adaptation decision using the AQoS and the UED(s), b) Transform the BSD PU

according to the adaptation decision, c) Scale (i.e., adapt) the media AU (e.g., discard

enhancement layers) according to the transformed BSD PU, d) Update start and length

information of the BSD PU according to the scaled media AU), 3) Packetize the media AU

and the BSD PU into RTP packets and populate the RTP header with media and XML

streaming instructions properties (e.g., timing, random access) and 4) Stream the packets into

the network.

We measured the memory utilization and CPU load of our adaptation server. To this end, we

access a single content (consisting of a media stream and a BSD), which is fragmented

according to the streaming instructions, adapted, packetized and streamed to the player on the

end device. We then access another content, and so on, until there are ten streams (five media

streams and five BSD streams) being processed and delivered concurrently. Figure 8 shows

the results of these tests for the SVC content. There is a single content being processed for

the first 40 seconds. Then there are two contents until second 80. From second 80 to 120 we

see three contents being processed concurrently. After second 120 there are four contents

being processed and finally (after second 160) there are five contents being processed in

parallel. At this number we had to finish our measurements, because the PC (a separate node)

running the players could not support more instances of the player. With 10 concurrent

streams, the memory utilization is at 20MB and the CPU load is at around 6%. As can be

seen from the measurements, the adaptation server would have supported several more

content streams (or contents with a higher bitrate).

15000

16000

17000

18000

19000

20000

21000

0 100 200 300

Measuring Points (1 per second)

M
e
m

o
ry

 U
ti

li
z
a
ti
o

n

(K
il
o

b
y
te

)

Memory Utilization

Memory Utilization (Moving Average)

0

2

4

6

8

10

0 50 100 150 200 250

Measuring Points (1 per second)

C
P

U
 L

o
a
d

 (
P

e
rc

e
n

t)

CPU Load

CPU Load (Moving Average)

Figure 8: MPEG-21 based Dynamic DIA Adaptation of 1 to 5 QCIF SVC Streams: Memory

Utilization and CPU Load

7 Summary and Future Work

In this paper, we addressed the problem of processing large metadata descriptions in

streaming scenarios. To this end we introduced streaming instructions for fragmenting

content-related metadata, associating the media segments and metadata fragments with each

other, and streaming and processing them in a synchronized manner. The streaming

instructions extend an XML metadata document by providing additional attributes to describe

the fragmentation and timing of media data and XML metadata such as to enable their

synchronized delivery and processing. In addition, a style sheet approach provides the

opportunity to dynamically set such streaming properties without actually modifying the

metadata themselves. We evaluated the implemented mechanisms both as “stand-alone”

processors and integrated in a specific application scenario. We showed the usefulness of our

work by implementing an adaptation node which uses our mechanisms to extend the static

DIA approach to dynamic and distributed usage scenarios.

The streaming instructions have been proposed for inclusion in the MPEG-21 multimedia

framework and are currently being considered as an amendment [DDA06].

Future work will include further evaluation of the streaming instructions for different types of

metadata. This may lead to new PU modes and/or streaming instruction properties. The

current synchronization mechanism relies on time stamps, implying a one-to-one relationship

between media and metadata AUs. This is not optimal, since metadata AUs are usually much

smaller than media AUs and the protocol overhead becomes considerable. A more flexible

synchronization mechanism will be investigated. Research on the robustness of metadata

channels is a logical next step, since enabling a single metadata AU to describe multiple

media AUs makes the loss of a metadata AU a much more serious issue than in a one-to-one

relationship.

References

[Fo06] P. Fox, D. McGuinness, R. Raskin, K. Sinha, "Semantically-Enabled Scientific Data

Integration", Geoinformatics 2006, May, 2006

[AKS03] S. Atarashi, J. Kishigami, S. Sugimoto, "Metadata and new challenges", Symposium on

Applications and the Internet Workshop, January, 2003

[Ve04] A. Vetro, "MPEG-21 Digital Item Adaptation: Enabling Universal Multimedia Access",

IEEE Multimedia, pp. 84-87, January, 2004

[De06] D. Van Deursen, W. De Neve, D. De Schrijver, R. Van de Walle, "BFlavor: an optimized

XML-based framework for multimedia content customization", 25th PCS, Beijing, April,

2006

[HE02] D. Hong, A. Eleftheriadis, "XFlavor: Bridging Bits and Objects in Media Representation",

Proceedings, IEEE Int’l Conference on Multimedia and Expo (ICME), Lausanne, 2002

[BS06] W. Bailer, P. Schallauer, "The Detailed Audiovisual Profile: Enabling Interoperability

between MPEG-7 Based Systems", Proceedings, 12th International Multi-Media Modeling

Conference (MMM 2006), Beijing, January, 2006

[Si01] T. Sikora, "The MPEG-7 Visual Standard for Content Description – An Overview", IEEE

Trans. on CSVT, vol. 11, no. 6, pp. 696-702, June, 2001

[BMF] ISO/IEC 14496-12:2005 Part 12: ISO Base Media File Format

[DPC05] K. Diepold, F. Pereira, W. Chang, "MPEG-A: Multimedia Application Formats", IEEE

Multimedia, pp. 34-41, October, 2005

[WCL03] E. Y.C. Wong, A. T.S. Chan, H. Leong, "Semantic-based Approach to Streaming XML

Contents Xstream", 27th Annual International Computer Software and Applications

Conference (COMPSAC 2003), Dallas, November, 2003

[Ni02] U. Niedermeier et al., "An MPEG-7 tool for compression and streaming of XML data",

IEEE International Conference on Multimedia and Expo (ICME 02), Lausanne, August,

2002

[PPP04] S. Pfeiffer, C. Parker, A. Pang, "The Continuous Media Markup Language (CMML)",

Internet Draft, IETF, March, 2004

[PPP05] S. Pfeiffer, C. Parker, A. Pang, "The Annodex exchange format for time-continuous

bitstreams", Internet Draft, IETF, March, 2005

[Ru01] L. Rutledge, "SMIL 2.0: XML for Web Multimedia", IEEE Internet Computing, pp. 78-84,

September, 2001

[Si03] F. Simeoni, D. Lievens, R. Connor, P. Manghi, "Language Bindings to XML", IEEE

Internet Computing, pp. 19-27, January, 2003

[Qu03] A. Quint, "Scalable Vector Graphics", IEEE Multimedia, pp. 99-102, July, 2003

[XIS04] XML Information Set (Second Edition), W3C Recommendation, February, 2004

[VT05] A. Vetro, C. Timmerer, "Digital Item Adaptation: Overview of Standardization and

Research Activities", IEEE Transactions on Multimedia, vol. 7, no. 3, pp. 418-426, June,

2005

[TDV06] C. Timmerer, S. Devillers, A. Vetro, "Digital Item Adaptation - Coding Format

Independence, in: Ian Burnett, Fernando Pereira, Rik Van de Walle, Rob Koenen (eds.),

The MPEG-21 Book", John Wiley and Sons Ltd, pp. 282-331, 2006

[STX04] Streaming Transformations for XML (STX), Version 1.0, Working Draft 1, July, 2004,

http://stx.sourceforge.net/documents/

[XPL99] XML Path Language (XPath), Version 1.0, W3C Recommendation, November, 1999

[HAY06] S. Harrusi, A. Averbuch, A. Yehudai, "XML Syntax Conscious Compression", Data

Compression Conference, pp. 402-411, March, 2006

[CW02] M. Cokus, D. Winkowski, "XML Sizing and Compression Study For Military Wireless

Data", XML Conference & Exposition 2002, December, 2002

[DB05] S. J. Davis, I. S. Burnett, "Efficient Delivery within the MPEG-21 Framework", First

International Conference on Automated Production of Cross Media Content for Multi-

Channel Distribution, pp. 205-208, November, 2005

[Su06] R. D. Sutter, S. Lerouge, P. D. Neve, C. Timmerer, H. Hellwagner, R. V. d. Walle,

"Comparison of XML serializations: cost benefit vs. complexity", ACM Multimedia

Systems, vol. 12, no. 1, pp. 1-15, August, 2006

[RTH05] M. Ransburg, C. Timmerer, H. Hellwagner, “Transport Mechanisms for Metadata-driven

Distributed Multimedia Adaptation”, First International Conference on Multimedia Access

Networks (MSAN 2005), July, 2005

[SDP] SDP: Session Description Protocol, RFC2327

[Pu99] H. Purnhagen, "An Overview of MPEG-4 Audio Version 2", AES 17th International

Conference on High-Quality Audio Coding, Firenze, Sep. 1999

[HW00] S.-T. Hsiang, J. W. Woods, "Embedded image coding using zeroblocks of subband/wavelet

coefficients and context modelling", MPEG-4 Workshop and Exhibition at ISCAS 2000,

Geneva, May, 2000

[DDA06] ISO/IEC 21000-7:2004/FPDAmd 2: Dynamic and Distributed Adaptation, 2006

[SMW06] H. Schwarz, D. Marpe, T. Wiegand, "Overview of the Scalable H.264/MPEG4-AVC

Extension", International Conference on Image Processing (ICIP 2006), October, 2006

